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ABSTRACT

A linear predictive form of classifier is described for

the sequential discrimination of target signatures. The class-

ifier implements a Generalized Sequential Probability Ratio

Test (GSPRT) which allows for multiple classes of target

signatures. Forms of the classifier for both noncoherent and

coherent signatures are described. Flow charts are included

for convenience of implementation.
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I. INTRODUCTION

An earlier report [1] and an associated paper i2] described

a linear predictive form of a two-class sequential classifier

for target signature data. The present report describes exten-

sions of that sequential classifier to multiple classes and to

coherent signature data. The new results, although complete

in themselves, draw heavily on material presented in the other

two publications. This report, therefore, assumes that the

reader is familiar with the material in References 1 and 2.

The extensions described here are conceptually straight-

forward and have already been cited in the previous publications.

However, results are presented here in sufficient detail for

immediate implementation. Section II describes the multiclass

sequential classifier for noncoherent signatures and Section III

formulates the results for coherent signatures. Section IV is

a summary. In addition, two appendixes are included. Appendix

A provides background material on complex Gaussian processes

that justifies the coherent formulation of the classifier.

Appendix B suggests a further extension of the classifier to a

class of nonstationary signatures.
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II. MULTICLASS SEQUENTIAL CLASSIFIER

A. Statistical Theory

Multiclass sequeitial testing - The multiclass sequential

classifier is based on the generalized sequential'probability

ratio test (GSPRT) due to Reed (3) and represents an extension

of the Wald sequential probability ratio test (SPRT) for two

hypotheses [4]. In the context of target classification let

X k represent the vector consisting of a set of k consecutive

returns x1 x .... k on a target which are equally spaced

in time. Such a set of returns is called a target signature.

The individual returns x. are in general vector quantities

since the sensor may measure several quantities at once

(radars may be dual polarized and samples may be taken

in multiple gates, optical sensors may take measurements

in several spectral bands,etc.). Let pi(Xk) represent the

probability density function under the hypothesis Hi that a

target belongs to class i. Then the GSPRT proceeds by suc-

cessive rejection of hypotheses as follows.

Let C be the total number of hypotheses (classes)

under consideration and let Ck be the number of hypotheses

that have not been rejected before k returns. Then a set

of Ck generalized likelihood ratios is defined by

2



ik(lk) = p k"" kk(X-k) Pi jnotJ

rejected

Vi'i Hielhypotheses not rejectedl (2.1)

and a corresponding set of thresholds A is selected in- k

a manner to be discussed presently. The following set

of tests is then performed

x(1k) < A -* reject H (2.2)

That is, all of the hypotheses are tested and a given

hypothesis Hi is rejected if the corresponding generalized

likelihood ratio is less than its threshold. If this

procedure results in only one unrejected hypothesis,

that hypothesis is the one accepted. Otherwise another

return Xk+1 is observed and the procedure is repeated

until there is only a single hypothesis remaining.

Reed suggests that the thresholds for the multi-

class sequential test be computed from the relation

k not jriot
rejected rejected

iH Elhypotheses not rejected (2.3)

where eij is the (desired) probability of deciding upon

3



fl given that H. is correct. Observe that this re-

quires recomputation of the thresholds after each re-

jection of a set of hypotheses. Since, except in the

two-class case, the GSPRT does not have any known

theoretically optimal properties, in practice it is just

as reasonable to determinethe initial thresholds from

(2.3) and keep the thresholds fixed or to allow the

thresholds to decrease in a prescribed manner with the number

of observations. A convenient family of these time-varying

thresholds is given by [5]

Ai -exp Ti , O<ni<
1 (2.4)k o max-I/

I18-2458831
0

4i= 4

N

1 2 3 4 5 6 7 8 9 10 k max

k

Fig. 2.1 -Form of Time-Varying Thresholds
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and is plotted in Fig. 2.1 for two values of ri -

Time-varying thresholds tend to decrease the average

number of returns necessary to make a classification,

but otherwise have no specific advantages.

Observe that neither the fixed nor the time-varying

thresholds guarantee that a decision will be made after

a finite number of observations. Thus in practical ap-

plications it is necessary to truncate the test after

a fixed number of observations. A decision can then

be conveniently made by the principle of maximum likeli-

hood. Hypothesis Hi is chosen wherel1

Pi~ka ( max IPj(X)~ (2.5)max j not -mkaxI
rejected

Alternatively a Bayes or Neyman-Pearson test can be

formulated involving the quantities pi(Xk) , and that
max

test can be evaluated to make the classification decision.

Details can be found in various texts in engineering and

statistics (see, e.g., Refs. 6 and 7).

Relations to two-class sequential testing -.As stated

earlier, the GSPRT is an extention of the Wald SPRT.

The SPRT is conventionally stated as

. . ... .. . . ... . . . .. . .. . . . . . . .. . . .. . . ... . . . . . . . . ......5I l ..



,X 10 A - accept H1  (2.6)k P2(10 < B - accept H2

2 2
where

A 1 -e 21
A=- e 12

(2.7)
B e 21

S--I- l

For tests involving two hypotheses (C=2), the GSPRT and

the SPRT are equivalent and the quantities defining them

are related by

= = 1l/X(Xk)] (2.8)

and

A = [2]

B = [A ] 2  
(2.9)

In this case both the SPRT and the GSPRT satisfy an op-

timality condition. In particular they minimize the

average number of returns necessary to achieve the

specified error probabilities e1 2 and e21 .

6



B. Linear Predictive Formulation

It is easy to show (see Ref. 1) that if the observations

l' '2' ''' k are zero mean and jointly Gaussian then the

log density function can be written in the recursive form

In p(Xk) = In P(4-r)x - kEkk - -n IEk1  - nIn27r

where (2.10)

= k Gk-T = -G I I k (2.11)

and Gk and Ek are matrix parameters derived from the

covariance matrix of Xk and n is the dimension of the x.

The quantity Gk ik- s the optimal linear estimate of

-k given k-l'and Gk is the matrix of prediction coefficients

that produces that estimate. The quantity Lk is the error Xk-xk

in the estimate and Ek is its covariance matrix. Both Gk and
k ar

Ek are computed from training data in a manner to be

described later. If the observations are not of zero mean

then a simple removal of the mean of -k and Xk-1 in (2.11)

allows for the representation in (2.10). Under conditions of

stationarity the classifier matrix parameters Gk and Ek for large

k can be well approximated by matrices of lower order p+l

and this greatly simplifies the classifier. For values of

k greater than p+l, only the last p returns xk-p' " k-I
A*

are used to form the estimate xk" The selected value p

7



relates to the modeling of target signatures as a multivariate

autoregressive process and is beyond the scope of the present

discussion. However Refs. 8 and 9 give approaches to and

discussions of the modeling problem.

Equations (2.1), (2.2), (2.10), and (2.11) specify the

classification algorithm. The classifier is represented as

a structured flow chart in Table 2.1 and as a block diagram

in Fig. 2.2. In the figure,( 2 .11) is realized by multichannel

discrete-time filters. The filters are time-varying for

k < p+l. However, for k > p+l the filters are time-invariant

and have impulse response of finite duration p+l.

The multiclass sequential classifier has a simple intuitive

explanation which follows from Fig. 2.2 and -he equations in

Table 2.1. A signature is applied to all branches of the

classifier simultaneously. In each branch, the mean of the

target class is removed, and the signature is fed through

a linear filter which produces the prediction error process

Ek. The terms ek E- £k appearing in Table 2.1, when summed

over k represent a normalized energy in the error process.

When this sum (the integrated error) for a given branch exceeds

the average of the corresponding sums for all branches by a

8
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TABLE 2.1

STRUCTURED FLOW CHART FOR MULTICLASS SEQUENTIAL CLASSIFIER

DO k =1I TO k

DO WHILE NO. OF CLASSES (C) >

DO WHILE H.i NOT REJECTED

M2 4c-p+1

Xkl-I

.c- T ' p

(G') (-i =1

i A i

!k 4 -3

r 2 1. p;( -2 2*np(4- + T E- Itk + tnIEI + nln2w

It-2 In PAO + -L n j4

jNOT
REJECTED

IFhi > -21nA. REJECT H; C -C - EXIIF C =

NO DECISION. CHOOSE H. SUCH THAT -2 lrP(4k ma minj NOT REJECTED j 2 InPj(Xk ma
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predetermined threshold* the class represented by the branch

is rejected. This procedure continues until a single class

remains unTejected.

The classifier parameters Gk, Ek, k = 1, 2, ..., p+l,

are most efficiently computed from the matrix covariance

function R(i) T via the multivariate Levinson

recursion 101 or directly from training data using various

algorithms (see,e.g.,Ref.,ll).** The formulas involve an

auxiliary matrix parameter r (the reflection coefficient) and

a set of backward prediction parameters Gk, Ejk, rk which per-

tain to the problem of estimating 11 from x2  ...'Ik. Although

these additional parameters are not used in the classifier,

they must nevertheless be carried along in the recursion for

the classifier parameters. The formulas that define the

multivariate Levinson recursion are as follows.

*For purposes of this intuitive explanation it is assumed that
the terms £nJEJ and nin 2n are lumped into the threshold.

**oth methods assume stationarity. A less efficient method
that does not assume stationarity is given in Ref. 1.

11



Gk =+ r rk. 1

Gk + i+-~.jr 1(2.12)

L~ [ t _ ] + 1_~ 1. r

k k-Gk-

where

k =(Ek'- )(RT(k)-GTBk)
(2.13)

rt -1 T tTT-r k Ek (R (k)-Gk Bk)

and

E E rT E t  r
k k-i k-i k-1 k-i

(2.14)

Et=t tT PtE= E_ r E r'
k k-i k-i k-I k-i

When the signature returns x. are one-dimensional (n=l)-J

the forward and backward prediction parameters are identi-

cal and each pair of equations (2.12) - (2.14) reduces to a

single equation. The resulting three equations define the

usual (univariate) Levinson recursion.

12



III. MULTICLASS SEQUENTIAL CLASSIFIER FOR COHERENT SIGNATURES

A. Motivation for the Coherent Form

The signature measured by a coherent radar can be

represented by a complex random process. Since the classifier

developed in Section II allows for multidimensional

observations, the real and imaginary parts of the complex

process can be represented by two correlated real processes

and a classifier can be developed on "hat basis. However,

the complex process that represents a radar signature is the

complex envelope of a real-valued narrowband process at the

video stage of a radar receiver. If this signal is stationary

then the usual theory for complex processes can be applied

to the signature. This allows for a more simple and elegant

analysis than is possible by treating the components of the

signature as correlated real processes. The relations between

the two approaches are discussed briefly in Appendix A. The

topic is discussed in more detail in several references 112-141.

In this section the individual coherent measurements are

represented by vector quantities -k = Ik + j yk where k and

yk are the quadrature components of the signal. We hasten to

point out that xk as used here does not represent the same

quantity used in Section II and that the classifier for real

13



processes cannot be considered to be a special case of the

classifier for coherent processes.

B. Coherent Form of the Classifier

Following the development in Section II, let Zk represent

the set of observations z1, z2, "' ., k" Then (see Appendix A)

the joint Gaussian density function for the pairs x1, y-I' '2'

-2' ... ' k' Yk is completely equivalent to the complex Gaussian

density function

e-(Zk- k)*K-l(Zk -k (3.1)

=k H nk IKI

where = [Z]and K is the covariance matrix 6[(Z-2)(Z ].

Although in most applications the complex random vector will

have zero mean (see discussion in Appendix A) we include the

mean here for the sake of generality. Then paralleling the

development in Ref. 1 it can be shown that

in p = n p(Zk~) - klk -k in lEki- n in 11
(3.2)

where

£ = *[-r,*rZ (3.3)

-k = k - Gk=k L [- Jk

14



where z' and ZI represent observations after removal of the

mean, and Gk and Ek are derived from the covariance matrix of

the observations in the same manner as they are for the non-

coherent case. The flow chart for the coherent form of the

classifier is given in Table 3.1. Figure 2.1 and the inter-

pretation given in Section II still applies although in this

case the filters have complex coefficients.

The classifier parameters can most conveniently be com-

puted from the complex form of the multivariate Levinson re-

cursion. Since the relevant equations are obtained from

(2.12) - (2.14) by merely replacing the transpose of a matrix

by its transpose conjugate, those equations need not be

repeated here. As in the noncoherent case, if the signature

returns z are one-dimensional the second equation in each

pair of (2.12) - (2.14) is redundant and can be eliminated.

15



TABLE 3.1

STRUCTURED FLOW CHART FOR THE COHERENT FORM
OF THE MULTICLASS SEQUENTIAL CLASSIFIER

DO kt - I TO It wox

DO WHILE NO. OF CLASSES (C) > I

DO WHILE HI NOT REJECTED

~k -!k - i

I
!k-p

~k-I = k-I

!k-1 k-

(Gk) Z-kl - Gp.1) Z-I

E -E~ E E'

!k fk fk

F k-I) + I

Ic 1 '(-k) + C z j(k
i NOT

REJECTED

IF h k> -InA I REJECT. H.i C -C I EXIT IF C I1

NO DECISION. CHOOSE H. SUCH THAT -Onpi(?kc min JNOT REJECTED f Inp 1(7

16
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IV. SUMMARY

This report described a multiclass sequential classifier

for signatures of targets observed by a radar or other sensor.

The classifier implementation was based on linear predictive

filtering concepts. A two-class version of this classifier
had been developed earlier. The current report extends the

work to multiple classes and to coherent signature data.

17
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APPENDIX A

COMPLEX REPRESENTATION FOR STATIONARY COHERENT PROCESSES

Define an n-dimensional complex vector random process

z(t) = x(t)+jyjt) where x(t) and y(t) are n-dimensional real

Jointly Gaussian vector random processes. Let Z,X, and Y

represent the nk-dimensional vectors formed from k samples

of the processes. We have

z = X + jY(A.1)

Define also

(A.2

so that(A2

z = [I]J (A.3)

Then it follows that the covariance matrices for 4 and zare
F respectively

ix
T] y _xyJ (A. 4)

Diyn + i yx ex (A.)

18



where the bar over the variables represents the mean value.

If the processes x(t) and y(t) are the quadrature components

of a narrowband process

v(t) = x(t) cos Wot +,(t) s in w t (A.6)

as in the case of a radar signal then z(t) represents the

complex envelope of the process. If the process v(t) is

stationary, then the complex envelope z(t) (i.e., both x(t)

and X(t))must have zero mean. Further, it is easy to show

by expanding 4[v(t+-r) vT (t)] (see e.g., Ref. 12 ) that if v(t)

is stationary then x(t) and y(t) must be jointly stationary

and their covariance functions must satisfy symmetry conditions

K x()=Ky (T)and K xy(T)=-K yx(T). It therefore follows that

X Ey (A.7)

and thus (from (A. 5)) that

K = x + j2F (A.8)

Under these conditions the Hermitian covariance matrix K

provides a complete description of the vectors X and Y

with respect to their individual second moment characteristics

and with respect to their cross correlations. Further, the

analysis is simpler and more elegant in terms of the

19



complex representation and hypothesis testing such as that

performed by the sequential classifier can be more efficient-

ly carried out by treating x(t) and y(t) as components of a

stationary complex process.

Since in many practical problems the complex envelope

z(t) arising from a radar signal will have random phase,

the zero mean condition is not a severe restriction. If

z(t) does not have random phase the process v(t) can be made

stationary (provided that conditions (A.7)hold) by removing

the time-varying function

cos wot + Y sin %ot (A.9)

This implies that a phase coherency is maintained between

the transmitted and received signals in such a way that x and

7 can be properly associated with the quadrature components.

Although this may be difficult to achieve in practice, we

shall allow for a non-zero mean of the complex vector Z in

order to maintain generality.

It is the goal of the following to show that if condi-

tions (A.7) hold then the multivariate Gaussian density func-

tion

_O = e - (A.l )
2nk 1

(211) II O

20



is completely equivalent to the complex Gaussian density

function

p z)- 1 -(Z-Z) K (Z-Z) (A.11)
-Z - TIn IKI

in the sense thtisi corresponds to t~ then p(0

This will be done in two steps.

First cbserve that from (A.4and (L.8we can write

By using (A.12)it can be directly verified that

-1ff 1

Ref --- K-[I ji (A.13)

Thus the exponent in (A.lO)is

'2 2 * I --

=-Re (Z-Z) K_ (Z-Z) -(Z-Z)*K 1(Z--ZJ (A. 14)

*(The last equality follows from the fact that K is Hermitian.)

Secondly, it can be shown that

Il2nk 2 (.5
S IKI A. 5

21



which implies that the scale factors in the two density

functions are equal. In order to show this, observe that

the determinant of K can be expressed as

nk
IKI = 1 Xi  (A.16)i=l

where X. are the eigenvalues of K, which are real but not1

necessarily distinct. Now let e be an eigenvector of K corres-

ponding to an eigenvalue A. We shall show that the vectors

11 Re []
and (A.17)

are eigenvectors of E both corresponding to an eigenvalue X/2.

(It is trivial to show that R and n, are orthogonal. Since

eigenvectors e" corresponding to various Xi are orthogonal, a

straightforward computation shows that the aR and nj

corresponding to different eigenvalues are also mutually

orthogonal and thus constitute a complete set of eigenvectors

for .)

22



That ('X.l7) are eigenvectors can be shown as follows.

From (A.12) and (&.17)we have

2 1m KreKI el[ Re K :-Im KI Re e

4 1 re K Re e - I11m K Ine

I m K Re e + Re 1K Ine

I1 [Re Ke] = [e e]

-1 Im 2 Im e 2 iR

and 
r e K m - Im e

I ReK lIme + In KRe ]

2 m liKin I - Re KRe e

1 rImKel [in e1L I -l ~1
2 LRe Ke 2

1 -Re e] 2-

Since Xhas two identical eigenvalues for every

eigenvalue of K, the determinant of 2is given by

23



I nI =j- ()2 (~ 2nk IK 12  (A. 18)
i=l

Thus the equivalence of (,.lO) and (A.ii) is shown.

244



APPENDIX B

EXTENSION OF THE SEQUENTIAL CLASSIFIER TO

A CLASS OF NONSTATIONARY SIGNATURES

Let E' represent the series of terms l, L21 ... I k

defined in (2.11). It is obvious from (2.11) that the

quantities 'F and Xk are related by a causal linear transforma-

ation with Jacobian equal to one. Thus it is possible to

write

P (X ) =p ( ) (B.1)

for any 9k corresponding to a given Xk" The fact that the

fk } Iare uncorrelated (see Ref. I or 2) allows a simple

factorization of the density pf and this leads directly to

the representation in (2.10) and the associated classifier

structure.

While strictly speaking the classifier developed in

Section II permits classification of nonstationary signatures,

many of the advantages of the classifier are lost. The filters

must be time-varying and in general have an impulse response

corresponding to the maximum length signature observed (p -kmx-1).

The Levinson recursion cannot be used to compute the class-

ifier parameters. Further, design and application of a class-

25



ifier under nonstationary conditions generally assumes that

the classifier will be applied starting at some exact time

epoch. This is not possible in most practical situations.

Our purpose here is to develop a classifier structure

for classes of signatures which can be modeled as containing

a random trend. Such signatures frequently occur in practice

and represent a form of temporal nonstationarity for which it

is not necessary (indeed of no value) to know the time epoch.

An example derived from observation of a satellite is shown in

Fig. B.l(a). In spite of its random nature, the trend can be

exploited for purposes of discrimination. In what follows, it

will be shown that to account for the nonstationarity requires

only a simple modification to the classifiers developed in

Sections II and III.

It is easy to show that a linear trend in a set of

(otherwise stationary) data can be removed by taking differences

V~k - k-l" Similarly any trend that can be represented

by a polynomial of order d can be removed by taking differences

of the data d times. Figure B.l(b) shows the data of

Fig. B.l(a) after taking second differences. Except for small

intervals at the nulls of the original signature the

differenced data exhibits a stationary behavior. The resulting

stationary process can be subjected to the usual processes of

linear prediction in order to perform the discrimination.

26
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Fig.Bl.(a-b) Removal of the trend in a signature by differencing.
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To formalize the foregoing statements observe that if

Uk = k x then the set of..differences. are related to

the observations Xk by the linear transformation

I
-I I (B.2)

01
0 .... I I

Since the Jacobian of this transformation is equal to one,

we have

PX (10 = P uU( (B.3)

Thus if 4 is stationary we apply the arguments in the

first part of this appendix to obtain the classifier structure.

Otherwise higher order differences are taken until a sta-

tionary process is approximated and then the linear predic-

tive structure is applied. In the case of a class of signa-

tures with polynomial trend of order d, a branch in the class-

ifier structure of Fig. 2.2 is replaced by the branch shown

in Fig. B.2.

lk'~ V ~ Prediction Filter C_~

Fig. B.2 Branch of sequential classifier for nonstationary
signatures.
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The fundamental ideas in treating this class of non-

. stationary signatures are derived from the theory of ARIMA

(autoregressive integrated moving average) models in time

series analysis whereas the corresponding ideas for stationary

models such as those discussed in the body of this report are

derived from the theory of AR (autoregressive) models. For a

thorough discussion of these topics see Ref. 15.
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